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ABSTRACT

From the standpoint of a policy maker who has access to a number of expert 
forecasts, the uncertainty of a combined or ensemble forecast should be inter-
preted as that of a typical forecaster randomly drawn from the pool. This 
uncertainty formula should incorporate forecaster discord, as justified by (i) 
disagreement as a component of combined forecast uncertainty, (ii) the model 
averaging literature, and (iii) central banks’ communication of uncertainty 
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via fan charts. Using new statistics to test for the homogeneity of idiosyncratic 
errors under the joint limits with both T and n approaching infinity simultane-
ously, the authors find that some previously used measures can significantly 
underestimate the conceptually correct benchmark forecast uncertainty.

Keywords: Central Bank communication; disagreement; ensemble; forecast 
combination; panel data; uncertainty

JEL Classification: C12; C33; E37

1. INTRODUCTION
Consider the problem of a macro policy maker who often has to aggregate a num-
ber of expert forecasts for the purpose of a uniform policy making. A general 
solution was provided by Bates and Granger (1969) who have inspired extensive 
research on forecast combination, as evidenced by two comprehensive surveys in 
Clemen (1989) and Timmermann (2006), and many additional papers since 2006.1 
The solution based on minimizing the mean squared error of the combined fore-
casts calls for a performance‐based weighted average of individual forecasts with 
precision of the combined forecast that is readily shown to be better than any of 
the constituent elements under reasonable conditions.2 Thus, Wei and Yang (2012) 
characterize this approach as “combination for improvement.” However, many 
studies have found that a simple average is often as good as the Bates‐Granger esti-
mator, possibly due to large estimation error of the weights, the variances of indi-
vidual forecast errors being the same or their pairwise correlations being the same; 
see, for example, Bunn (1985), Clemen and Winkler (1986), Gupta and Wilton 
(1987), Palm and Zellner (1992), and Smith and Wallis (2009), among many oth-
ers. Under the standard factor decomposition of a panel of forecasts, where the 
cross correlations of forecast errors can be attributed to a common aggregate 
shock, the precision of this equally weighted average is simply a function of the 
variance of this common shock that nets out the uncertainty associated with idi-
osyncratic errors. This precision formula should be enriched with disagreement, as 
motivated by a variety of theoretical, empirical, and policy factors.

As Timmermann (2006, p. 141) has noted, heightened discord among fore-
casters, ceteris paribus, may be indicative of higher uncertainty in the combined 
forecast from the standpoint of a policy maker. Thus, the precision formula for 
the average (or “consensus”) forecast should reflect disagreement among experts 
as part of forecast uncertainty, which is desirable in many situations. On the other 
hand, the use of disagreement as a sole proxy for forecast uncertainty continues 
to be debated in other contexts.

Another justification for incorporating disagreement as part of aggregate uncer-
tainty comes from the rich literature on model averaging pioneered by Leamer 
(1978). Draper (1995) and Buckland, Burnham, and Augustin (1997) present cogent 
explications of the result using Bayesian and Frequentist approaches respectively. 
See Hansen (2008) and Amisano and Geweke (2017) for more recent advances.
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A third consideration for using a theoretically sound uncertainty measure of 
the consensus forecast comes from the recent advances in the presentation and 
communication strategies by a number of central banks, pioneered by Bank of 
England’s fan charts to report forecast uncertainty. For the credibility of forecasts 
in the long run, it is essential that the reported confidence bands for forecasts be 
properly calibrated. In the United States, from November 2007, all federal open 
market committee (FOMC) members are required to provide their judgments as 
to whether the uncertainty attached to their projections is greater than, smaller 
than, or broadly similar to typical levels of forecast uncertainty in the past. In 
order to aid each FOMC member to report their personal uncertainty estimates, 
Reifschneider and Tulip (2019) have provided a measure for gauging the average 
magnitude of historical uncertainty using information on past forecast errors from 
a number of private and government forecasters. These benchmark estimates for 
a number of target variables are reported in the minutes of each FOMC meeting 
and are used by the public to interpret the responses of the FOMC participants. 
We show how this measure incorporates the disagreement amongst forecasters as 
a component of forecast uncertainty, but particular formula used may underes-
timate the true historical uncertainty if  the individual forecast errors are hetero-
geneous. Given that these historical benchmark numbers are fed into the highest 
level of national decision making, a careful examination of a number of alterna-
tive uncertainty measures relevant for a policy maker cannot be overemphasized.

In this chapter, we establish the asymptotic limits for these alternative meas-
ures of uncertainty with both the time series (T) and cross section (n) dimensions 
approaching infinity simultaneously, and develop tests to check if  the uncertainty 
measures are statistically different and whether the forecasters are exchangeable. 
We build on Issler and Lima (2009), who have shown the optimality of the (bias‐
corrected) simple average forecast using panel data sequential asymptotics. Our 
tests identify the differences in the idiosyncratic error variances, in addition to the 
differences in the means, and thus shed new light on the heterogeneity of expecta-
tion formation processes.3 A Monte Carlo study confirms that the test performs 
well in our context. We use individual forecasts from the Survey of Professional 
Forecasters (SPF) and the Michigan Survey of Consumers (MSC) to show that 
the uncertainty measure conventionally attached to a consensus forecast using 
the Bates‐Granger approach and the Reifschneider and Tulip (2019) [hereaf-
ter RT] benchmark measure can underestimate the true uncertainty under cer-
tain circumstances. Similar to Rossi and Sekhposyan (2015) and Jo and Sekkel 
(2019), our measure is based on subjective forecasts of market participants and 
reflects their perceived uncertainty. In contrast to these two papers, but like RT, 
we include both common and idiosyncratic uncertainty in the measurement and 
provide the typical levels of uncertainty seen on average over history. Our test 
also confirms these results at the 1% level for multiple forecast horizons.

The plan of the chapter is as follows. Section 2 derives the relationship between 
disagreement and overall forecast uncertainty. Section 3 compares different 
measures of historical uncertainty and develops a new test for forecaster homo-
geneity. In Section 4, we use SPF data on real gross domestic product (GDP) and 
inflation forecasts by experts and the MSC data on price expectations made by 
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households to highlight the differences in the alternative uncertainty measures, 
and implement our test for forecaster homogeneity. Pesaran (1987) established 
the value of using survey data in measuring uncertainty and testing for ration-
ality. Finally, Section 5 summarizes the results and presents some concluding 
remarks. Proofs of theorems and corollaries in Section 3 are relegated to the 
unpublished mathematical appendix in Lahiri, Peng, and Sheng (2020).

2. UNCERTAINTY AND DISAGREEMENT
Let Yt be the random variable of interest, Fith be the forecast of Yt made by indi-
vidual i at time t – h. Then individual i’s forecast error, eith, can be defined as

 e A F ,ith t ith= −  (1)

where At is the actual realization of Yt. Following a long tradition, for example, 
Davies and Lahiri (1995) and Gaglianone and Lima (2012), we write eith as the sum 
of an individual bias, μit, a common component, thλ  and idiosyncratic errors, ithε :

 e ,ith ith th ithµ λ ε= + +  (2)

where μith is nonrandom and time‐varying, λth represents the cumulative weighted 
effect of all independent shocks that occurred from h‐period ahead to the end 
of target year t. Thus, even if  forecasters make “perfect” forecasts, the forecast 
error may still be nonzero due to shocks (λth), which are, by nature, unpredict-
able. Forecasters, however, do not make “perfect” forecasts even in the absence 
of unanticipated shocks. This “lack of perfection” is due to other factors (e.g., 
differences in information processing, loss functions, interpretation, judgment, 
and forecasting models) specific to a given individual at a given point in time and 
is represented by the idiosyncratic error, ithε .

In order to establish the relationship between different measures of uncer-
tainty and derive their asymptotic limits, we make the following simplifying 
assumptions:
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Assumption 3 (Idiosyncratic Shocks)

ithε  is independent identically distributed over t, and independent  
potentially non‐identically distributed across i with E E0, ,ith ith ih h

2 2 2ε ε σ σ= = ε ε  

n
E Elim

1
, 0, ( )ih

i

n

ith ith ih
2

1

3 4∑σ ε ε ω= = =ε ε
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i
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2 8   

In addition, ih jhω ω=ε ε  whenever σ σ=ε ε .i j
2 2

Assumption 4 (Relations)

λth is independent of 
ishε  for all i, t, and s.

Remark 1. Assumption 1 allows for time‐varying nonrandom bias, which is more 
general than the time‐invariant assumption made in the literature (e.g., Issler 
and Lima, 2009) and hence potentially has a wider range of applications. The 
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ual bias is negligible in the asymptotic limits involving various ex post measures 
of forecast uncertainty. The eventually vanishing bias condition is in line with 
the spillover effect that the bias gets smaller as more forecasters learn from each 
other, and consistent with the empirical evidence that forecasters’ biases dimin-
ish over time as they gain experience, cf. Pesaran (1987) and Lahiri and Sheng 
(2008).4 Assumption 2 implies that λth is a stationary ergodic moving average pro-
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almost identical to the assumption in Issler and Lima (2009) except for the 
higher moment condition, which, together with the higher moment assumption 
of ithε , is required to establish the asymptotic limits in Theorem 1. Assumption 3  
is standard in errors component or factor analysis. It can be readily extended, 
at the expense of some technical complication, to allow for both some weak 
time dependence and cross‐sectional dependence of groupwise block form 
brought by some residual group‐wide influences.5 The requirement, ih jhω ω=ε ε  
whenever ih jh

2 2σ σ=ε ε , though slightly restrictive, still allows for a wide range of 
probability distributions such as normal, t, and uniform distributions with zero 
mean. The independence of λth and ishε  in Assumption 4 is common in errors 
component or factor models.

Taken together, Assumptions 1–4 imply that the individual forecast error is 
not only an asymptotic stationary and ergodic process for any given horizon 
h, but also has a factor structure interpretation. Given a panel of  forecasts, 
Lahiri and Sheng (2010) decompose the average squared individual forecast 
errors as
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 can be viewed as the volatil-

ity associated with a representative forecaster, selected randomly from among 
all forecasters, for example, Giordani and Söderlind (2003), Lahiri and Sheng 
(2010), and Ozturk and Sheng (2018). This decomposition of the uncertainty of a 
typical forecaster is consistent with the vast literature on the capital asset pricing 
model that decomposes the return volatility of a typical stock into market volatil-
ity and firm‐specific volatility; see, for example, Campbell, Lettau, Malkiel, and 
Xu (2001).

By taking time average on both sides of equation (3), we get an empirical 
measure of historical forecast uncertainty based on past errors such that
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Equation (4) states that the squared measure can be decomposed into two 
components: uncertainty that is common to all forecasters and uncertainty that 
arises from heterogeneity of individual forecasters. The first component is the 
empirical variance of the average that is conventionally taken as the uncertainty 
of the consensus forecast; see, for example, Patton and Timmermann (2011) and 
Clements (2014). The second component is the disagreement among forecast-
ers. Similar decomposition of uncertainty is also obtained by Draper (1995) in 
assessing model uncertainty via Bayesian approach. Geweke and Amisano (2014) 
presented a parallel decomposition of predictive variance from Bayesian model 
averaging in terms of intrinsic and extrinsic variances.

By virtue of Assumptions 1–4, the population analog of equation (4) is given 
by
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It is now obvious from equation (5) that the squared uncertainty of a typical 
forecaster arises from the variance of the aggregate shock common to all forecasters 
and from the heterogeneity of individual forecasters that contains both the average 
idiosyncratic variance and the average of the variance of individual biases. What is 
not readily recognized in the literature is that apart from the disagreement coming 
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In the context of the empirical examples on real GDP and inflation forecasts that 
we report in Section 4, a model uncertainty audit reveals that the variance explained 
by the systematic bias component is tiny compared to the other two components in 
equation (5). A similar result on the transitory nature of the individual bias terms is 
also reported by Reifschneider and Tulip (2019).
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3. MEASURES OF HISTORICAL UNCERTAINTY AND 
TESTS FOR FORECASTER HOMOGENEITY

3.1. Measures of Forecast Uncertainty and their Asymptotic Properties

A common practice in the uncertainty literature is to quantify uncertainty in 
terms of standard deviation. In line with this tradition, taking the square root 
of the average of the individual variances observed over the sample period in 
equation (4) gives the historical uncertainty faced by a policy maker while using 
a typical forecaster.

Definition (Forecast combination uncertainty)
The historical uncertainty of a combined forecast from n experts is given by

 RMSE
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11
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 (6)

The historical uncertainty measure, RMSELPS in equation (6), in which the 
uncertainties add in quadrature is consistent with the standard error propagation 
formula used for calculating uncertainties among experimental scientists in engi-
neering, physics, chemistry, and biology, cf. Draper (1995).

On the other hand, the conventional choice as suggested by Bates and Granger 
(1969) is the root mean squared error (RMSE) of the average forecast
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With the stated objective of using forecast errors made by a panel of fore-
casters to generate a benchmark estimate of historical forecast uncertainty, 
Reifschneider and Tulip (2019) propose the following measure

 RMSE
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11
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They explicitly recognized that the empirical uncertainty faced by a typical fore-
caster is the average of the estimated individual uncertainty. Along this line, Jurado, 
Ludvigson, and Ng (2015) proposed an ex post analog of aggregate uncertainty 
measure. However, as Boero, Smith, and Wallis (2008) pointed out, aggregating indi-
vidual standard deviations , rather than individual variances, as a measure of collec-
tive uncertainty would violate the identify in equation (4). Obviously, RMSERT  is 
distinct from RMSELPS , and by construction, incorporates partially the disagree-
ment as a component of uncertainty as shown in the following theorem and corollary.

Theorem 1. Suppose Assumptions 1–4 hold. Then as ( )→∞n T, ,
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An immediate consequence of Theorem 1 is Corollary 1.
Corollary 1. Suppose Assumptions 1–4 hold. Then as n T, ,( )→∞
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Remark 2. RMSEAF  tends to ignore the uncertainty associ-
ated with the idiosyncratic shocks, especially when n is large since 
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trivial to see that RMSELPS and RMSEAF yield identical asymptotic limit if  

and only if  0h
2σ =ε .

Remark 3. Corollary 1 implies, in light of Jensen’s inequality, 
RMSE RMSERT LPS≤  in the limit. RMSERT, though allows for some disa-
greement among forecasters, underestimates the historical uncertainty espe-
cially in the presence of unequal idiosyncratic error variances. The amount 
of underestimation in the limit, obtained via applying second‐order Taylor’s 

expansion to 1 h h ih h
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Remark 4. Interestingly, RMSERT , as a measure of the typical level of histori-
cal uncertainty, is potentially more volatile than RMSELPS  because of 1φ≥  
by virtue of Cauchy‐Schwarz inequality.
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3.2. Tests for Forecaster Homogeneity and Their Asymptotic Distribution

It is evident from Remark 3 that testing for the equality of RMSELPS and RMSERT 
in the limit is equivalent to testing for var( ) 0ih

2σ =ε , that is, ih h
2 2σ σ=ε ε  for almost 

all i with n approaching infinity. But to examine whether RMSERT and RMSELPS 
give statistically different measures of uncertainty in the context of a particu-
lar data set, it is necessary to restrict the null hypothesis to ih h

2 2σ σ=ε ε  for all i.6 
To derive the test, we first obtain various bias‐corrected estimators by letting 
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ε ε  . The resulting test is  

presented in the following theorem.
Theorem 2. Suppose Assumptions 1–4 hold. Then under the null hypothesis 
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Theorem 2 has established the joint limit distribution of the statistic for testing 
the null hypothesis that ih h

2 2σ σ=ε ε  for all i. By construction, λth plays no role 
in the test since it is completely removed in the process of computing consist-
ent estimates for ithε . Along with λth, all between‐ and within‐forecaster cor-
relations are also removed. Moreover, the impact of the nonstochastic bias 
μit is asymptotically negligible as implied by assumption. Thus, our test is 
essentially an unconditional test for homogeneity of idiosyncratic variances 
in large panel data framework. A rejection of the null hypothesis based on 
Theorem 2 can be interpreted as a signal of the need for using unequal weights 



38 KAJAL LAHIRI ET AL.

in computing the measures of uncertainty. Future research is warranted in 
exploring an optimally weighted (over i) version of RMSELPS, which might be 
lower than the RMSELPS based on a simple average.

Remark 5. The statistical literature for testing equality of variances is huge. 
The most widely used procedure among these is an F test proposed by Levene 
(1960) in the form of the classic ANOVA method applied to the absolute dif-
ferences between each observation and the mean of its group. Brown and 
Forsythe (1974) suggested using median instead of the mean, and this ver-
sion of the Levene test has been found to have excellent power properties 
even under asymmetric distributions, see Gastwirth, Gel, and Miao (2009). 
However, as Iachine, Peterson, and Kyvik (2010) have pointed out this family 
of tests assume independence of observations, and hence are not suitable in 
our context where forecast errors are sticky and correlated across forecasters 
due to common shocks.

An alternative approach assumes that the individual variance ( )ih
2σε  can be 

approximated by a function of covariates. Testing for homoscedasticity then 
reduces to a joint testing for zero coefficients using Lagrange Multiplier tests, 
see Baltagi, Bresson, and Pirotte (2006) and Baltagi, Jung, and Song (2010). 
These tests require a prior knowledge of what might be causing the heter-
oskedasticity, and have statistical power provided ih

2σε  can be well explained 
by a few proxies. Since we have very little information on the characteristics 
of professional forecasters and how they make forecasts, this approach is not 
feasible in our case.

Remark 6. It is clear from expression (9) that we are in essence testing the fol-
lowing null hypothesis

 p RMSE p RMSE8 [ lim lim ] 0.h h
n T

LPS
n T

RT
2 2 3/2

( , ) ( , )
σ σ( )+ − =λ ε

→∞ →∞
 

That is, we are testing the significance of the scaled difference between the 
asymptotic limits of RMSELPS and RMSERT.

Remark 7. The restriction that 
T
n

0→  as n T( , )→∞  controls for the 

approximation errors in panel estimation and prevents them to have a non‐
trivial effect on the limit distribution. Moreover, from the proof of Theorem 2  
in the Online Appendix, we see the presence of two bias terms of magnitude 

order O n( )p
1/2− – one positive and one negative, and two positive bias terms 

of order O n( )p
3/2− .

Remark 8. Under the null hypothesis, the term T
T nT
1

ˆ
1

ˆith
t

T

ith
t

T

i

n
2

1

2

11

2

∑ ∑∑ε ε−
























= ==

 

roughly follows a 1
2χ  distribution for large T and large n, leading to potential 

size distortions and slow convergence to standard normality due to its large 
positive skewness (close to 8 ).



Measuring Uncertainty of a Combined Forecast 39

To address the bias and skewness issues pointed out in Remarks 7 and 8, we define 
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 , and modify the test 

statistic proposed in Theorem 2. The result is then summarized in the following  
theorem.

Theorem 3. Suppose Assumptions 1–4 hold. Then under the null hypothesis 
that ih h
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Remark 9. The statistic in Theorem 3 reduces the asymptotic bias by subtracting the 
estimated means for the four bias terms discussed in Remark 7 and by scaling with 

the factor 
n

1
1 4

−








−

. A similar approach was adopted by Pesaran and Yamagata 

(2008) in their test of slope homogeneity in large random coefficient panel data 
models, see also Hsiao and Pesaran (2008). In addition, it addresses the issues of 
positive skewness and slow convergence by adopting the popular Wilson‐Hilferty 
cube root transformation; see Chen and Deo (2004) for a general discussion on 
power transformation to tackling skewness and slow convergence problems.

3.3. Monte Carlo Simulation

To assess the performance of our tests, we conduct Monte Carlo simulations. 
We consider all combinations of T = 20, 60, 120 and n = 20, 60, 120. Data are 
generated according to eith th ithλ ε= + .7 Since λth plays no role in the test, for 
simplicity, it is generated as a moving average process of order one such that 

λ ξ ξ= − −0.5 ,th th t h( 1)  with U~ ( 1,1)th

iid

ξ − . ithε  are randomly generated from either a 

normal distribution N (0, )ih
2σε  or a uniform distribution U ( 3 , 3 )ih ihσ σ− ε ε . To 

assess the size of our tests, we let ih h
2 2σ σ=ε ε  for all i and set 0.05,0.25h

2σ =ε , and 
1.25, respectively. To evaluate the power, we first set the value for the average 
of idiosyncratic variances ( h

2σε ), and then let 100r percentage of idiosyncratic 
variances differ from h

2σε , with half  of them greater and the other half  smaller 
than h

2σε . The magnitude of the difference is measured by 100p percentage. Our 
simulation design allows us to explore the effect of changes in r and p on the 
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performance of the test statistics, as large values of r and/or p introduce increas-
ing heterogeneity of idiosyncratic variances. In our simulation study, we consider 
all combinations of r 0.3,0.5,0.7=  and p 0.3,0.5,0.7= . For brevity, we report 
the results for 0.05h

2σ =ε  only, since other values of h
2σε  (namely, 0.25 and 1.25) 

yield very similar power. All results are obtained from 5,000 replications.
Since the results for the original test in Theorem 2 are slightly inferior to those for 

the bias and skewness corrected test ( ZnT
bsc ) in Theorem 3, and for the sake of brevity, 

we report only the simulation results for the latter. Table 1 summarizes the size of 
the test. When the idiosyncratic errors are assumed to be normally distributed, the 
ZnT

bsc  test yields good empirical size, though slightly oversized when n = 20. With a 
uniform distribution for the error terms, the test exhibits size distortions, especially 
for n = 20, but the size distortion becomes less as n increases to 60. Turning to the 
power, Table 2 shows that the ZnT

bsc  test becomes more powerful when either r or p 
increases. Recall that r indicates the fraction of heterogeneous idiosyncratic vari-
ances in the panel and p captures the deviation of the individual variances from the 
average of idiosyncratic variances on the whole. Taken together, r measures the rela-
tive amount of evidence against the null (or “patterns”), and p measures the overall 
amount of evidence against the null (or “strength”). Moreover, the power tends to 
increase when T and/or n increase for given values of r and p, which justifies our 
proposed test for the use in large panels. Finally, the ZnT

bsc  test performs better under 
a uniform distribution than a normal distribution for the idiosyncratic error terms.

4. EMPIRICAL ILLUSTRATIONS: UNDERESTIMATION OF 
UNCERTAINTY IN US GDP AND INFLATION FORECASTS
In this section, we present estimates of historical uncertainty in inflation and out-
put growth forecasts using RMSELPS , and compare it to RMSEAF  and RMSERT .  

Table 1. Size of ZnT
bsc  Test.

0.052σ =ε 0.252σ =ε 1.252σ =ε

n = 20 n = 60 n = 120 n = 20 n = 60 n = 120 n = 20 n = 60 n = 120

T = 20 0.065 0.049 0.043 0.067 0.046 0.047 0.066 0.047 0.041

DGP I T = 60 0.075 0.052 0.054 0.074 0.051 0.051 0.076 0.053 0.051

T = 120 0.078 0.059 0.051 0.080 0.057 0.050 0.074 0.058 0.054

T = 20 0.136 0.061 0.055 0.137 0.065 0.054 0.138 0.061 0.052

DGP II T = 60 0.143 0.067 0.056 0.147 0.070 0.055 0.137 0.067 0.058

T = 120 0.148 0.073 0.062 0.138 0.066 0.060 0.142 0.070 0.056

Notes: Rejection rates of ZnT
bsc  test under H : i0

2 2σ σ=ε ε  for all i at the 5% nominal level based on 
two‐sided N(0, 1) test and 5,000 replications. We consider all combinations of T = 20, 60, 120 and n = 
20, 60, 120. Data are generated according to λ ε= +e .it t it λt is generated as a moving average process 

of order one such that λ ξ ξ= − −0.5 ,t t t 1  with U~ ( 1,1)t

iid

ξ − . itε  are randomly generated from either a 

normal distribution N (0, )i
2σε  under DGP 1, or a uniform distribution U ( 3 , 3 )i iσ σ− ε ε  under DGP 

2. To assess the size of our tests, we let i
2 2σ σ=ε ε  for all i and set σ =ε 0.05,0.25,2  and 1.25, respectively.
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The use of various types of survey data in measuring forecast uncertainty is well 
elaborated in Pesaran and Weale (2006).

4.1. Survey of Professional Forecasters

The first data set used in this study to examine the alternative uncertainty esti-
mates comes from the US SPF over 1991Q1 to 2017Q4. We focus on forecasts of 
GDP price deflator and real GDP growth, with horizon varying from one to five 
quarters. In order to calculate the forecast errors, we used the first‐announced 
actual values in real time from the Real Time Data Set for Macroeconomists 
(RTDSM) provided by the Federal Reserve Bank of Philadelphia. The forecast 
data set fits our need well because it covers 90–100 forecasters over 108 quar-
ters. The SPF is a quality‐assured and widely used quarterly survey on macro-
economic forecasts in the United States. The American Statistical Association 
(ASA) and the National Bureau of Economic Research (NBER) initiated the 
survey in 1968Q4. Due to a rapidly declining participation rate in the late 1980s, 
the Federal Reserve Bank of Philadelphia took over the survey in 1990 with a new 
infusion of forecasters. Thus, in order to minimize the missing data problem, our 
sample starts from 1991Q1; even then nearly 70% of the potentially observable 
forecasts are unavailable, cf. Engelberg, Manski, and Williams (2011).

Table 2. Power of ZnT
bsc  Test.

r = 0.3 r = 0.5 r = 0.7

n = 20 n = 60 n = 120 n = 20 n = 60 n = 120 n = 20 n = 60 n = 120

T = 20 0.16 0.25 0.42 0.26 0.50 0.77 0.37 0.73 0.95

p = 0.3 T = 60 0.55 0.92 1.00 0.85 1.00 1.00 0.96 1.00 1.00

T = 120 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T = 20 0.43 0.83 0.99 0.74 0.99 1.00 0.91 1.00 1.00

DGP I p = 0.5 T = 60 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T = 120 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T = 20 0.82 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

p = 0.7 T = 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T = 120 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T = 20 0.50 0.79 0.97 0.75 0.98 1.00 0.90 1.00 1.00

p = 0.3 T = 60 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T = 120 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T = 20 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DGP II p = 0.5 T = 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T = 120 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T = 20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p = 0.7 T = 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T = 120 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Notes: See Table 1. Under DGP I, N~ (0, )it
2

i
ε σε ; under DGP II, U~ ( 3 , 3 )it i i

ε σ σ− ε ε , where 

0.05.2σ =ε  r measures the percentage of 2

i
σε  that differ from 2σε . p measures the magnitude of the 

deviation of 2

i
σε  from 2σε  on the whole.
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The missing values pose a potential challenge for empirically implementing 
our test statistics since many of the asymptotic inequalities that we established are 
not necessarily valid in the context of incomplete panels. Following a lead from 
Genre, Kenny, Meyler, and Timmermann (2013), we impute the missing values, 
but allow for uncertainty in inference due to missing data by multiple imputations 
(MIs). Using Markov chain Monte Carlo (MCMC) techniques, a predictive dis-
tribution of missing data conditional on observed forecasts is simulated leading 
to the creation of MIs, see Little and Rubin (2002). Our model of imputation for 
each variable and for each horizon is specified as a linear mixed‐effects model

 εe e e e( ) ,ith th i ih h ith. . ..α β γ= + + − +  (10)

where e th.  is the average forecast error for period t made by the participating 
forecasters, eih.  is the average forecast error by forecaster i during the periods 
for which he/she forecasted, and the overall mean of  forecast errors is eh.. . εith  
is the error in the imputation equation. It is presumed that parts of  eith are miss-
ing that we need to impute. Whereas β is specified as a fixed effect with expected 
value 1, e e( )i ih h. ..γ −  is treated as random effects allowing for time‐invariant 
individual biases. Note that in Genre et al. (2013), the second term in (10) is a 
function of  recent average deviation of  forecasts made by a forecaster from the 
mean forecasts.8 However, as discussed in Lahiri, Peng, and Zhao (2017), due to 
excessive missing observations in SPF data, we took individual means instead. 
Since our aim is to fill in the missing values retrospectively for calculating the 
ex post RMSEs, we did not have to impute recursively in real time, even though 
our scheme in principle can allow for this. After each imputation, we replaced 
the right‐hand‐side variables based on the imputed data set, and the missing 
observations were imputed again. In this way, the three variables in equation 
(10) will be pairwise consistent. This is a sensible imputation scheme in our con-
text since the original time series of  mean forecasts will be preserved, and the 
structure of  correlations in the forecast errors between and within individuals 
will be largely maintained. What is most noteworthy is that the mean squared 
forecast errors based on the original incomplete panels and the imputed data 
sets were very close.9

Tables 3 and 4 report various statistics for inflation and output growth fore-
casts, respectively, using multiple imputed data. Two points are worth noting. 
First, the RMSEs associated with output are uniformly higher compared to infla-
tion due to a differential incidence of common shocks. Both the idiosyncratic 
and common shocks are more variable for GDP growth forecasts than those 
for inflation, and the latter for GDP is comparatively very high. This phenom-
enon, which makes real GDP growth a difficult variable to predict, has been 
documented by Lahiri and Sheng (2008) using a heterogeneous learning model. 
More importantly, as expected, for all five horizons and for both GDP growth 
and inflation, RMSERT  is less than RMSELPS , but the differences between these 
two measures are very small. Yet, these differences are statistically significant for 
almost all cases. To understand the latter finding, note that we are testing the sig-
nificance of the scaled difference between the asymptotic limits of RMSELPS and 
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RMSERT, as noted in Remark 6. Indeed, the scaled differences range from 0.09 to 
0.13 for inflation and from 0.12 to 0.36 for output growth forecasts, resulting in a 
rejection of the null hypothesis that the scaled difference (i.e., the variance of idi-
osyncratic variances) is zero by both the original and bias‐corrected test statistics 
( ZnT

o  and ZnT
bsc ). The power of the tests comes from the fact that they hone into 

the individual forecast variances after netting out the more formidable variability 
of the common shocks in constructing the statistics.

Note that the RMSE figures that are reported by Reifschneider and Tulip (2019) 
and those in this chapter are not directly comparable. RT used the simple aver-
ages of the individual projections in SPF, Blue Chip and FOMC panels, together 
with Greenbook, Congressional Budget Office (CBO) and the Administration 
forecasts giving n = 6 in their calculation. Specifically, their measure is expressed 

as RMSE
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, where Ft
m

·  is the mean forecast for the 

group m, for the target year t and h‐period ahead to the end of the target year. 
By averaging across individual projections, most of idiosyncratic differences and 
disagreement in FOMC, SPF and Blue Chip forecasts have inadvertently been 
washed away. They found very little heterogeneity in these six forecasts. On the 

Table 3. Measures of Historical Uncertainty in SPF Inflation Forecasts.

Horizon RMSEAF RMSERT RMSELPS ZnT
o ZnT

bsc

1‐quarter ahead 0.830 1.158 1.167 4.340*** 4.278***
2‐quarter ahead 0.923 1.135 1.140 3.857*** 3.888***
3‐quarter ahead 0.977 1.187 1.196 3.786*** 3.971***
4‐quarter ahead 1.002 1.215 1.226 3.564*** 3.776***
5‐quarter ahead 1.064 1.295 1.305 2.196** 2.258**

Notes: RMSEAF is the conventional uncertainty measure in equation (7), RMSERT is the Reifschneider 
and Tulip (2019)’s uncertainty measure in equation (8) and RMSELPS is our suggested uncertainty 
measure in equation (6). In testing the null hypothesis that RMSERT is the same as RMSELPS, the original 
test statistic ZnT

o  is defined in Theorem 2, and ZnT
bsc  is the bias and skewness corrected test statistic as 

defined in Theorem 3. The actual inflation rate for 1991–2017 is taken from the first quarterly release of 
Federal Reserve Bank of Philadelphia “real‐time” data set. The inflation forecasts are taken from the 
SPF from 1991:Q1 until 2017:Q3. *** and ** indicate significance at the 1% and 5% level, respectively.

Table 4. Measures of Historical Uncertainty in SPF Output Growth Forecasts.

Horizon RMSEAF RMSERT RMSELPS ZnT
o ZnT

bsc

1‐quarter ahead 1.402 1.638 1.642 3.558*** 3.511***
2‐quarter ahead 1.738 1.920 1.922 3.744*** 3.716***
3‐quarter ahead 1.913 2.080 2.082 2.612*** 2.591***
4‐quarter ahead 2.055 2.245 2.249 −0.107 −0.003
5‐quarter ahead 2.104 2.269 2.272 0.566 0.671

Notes: See Table 3. The actual output growth rate for 1991–2017 is taken from the first quarterly release 
of Federal Reserve Bank of Philadelphia “real‐time” data set. The output growth forecasts used in this 
study are taken from the SPF from 1991:Q1 until 2017:Q3. *** indicates significance at the 1% level.
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other hand, their simultaneous use of Greenbook, CBO, Administration, consen-
sus FOMC, SPF, and Blue Chip forecasts meant that RT had to meticulously sort 
out important differences in the comparability of these six forecasts due to data 
coverage, timing of forecasts, reporting basis for projections, and forecast condi-
tionality. Despite all these differences, these two sets of uncertainty estimates are 
very close in the context of SPF data set. At least a part of the explanation for 
this similarity is due to the use of dataset from professional forecasters. For non‐
professionals, such as surveys of households, where the idiosyncratic errors are 
expected to be more heteroskedastic, we may see a substantial difference between 
RT and LPS uncertainty measures. Indeed, if  the cross‐sectional variance of idi-

osyncratic error variances, defined as 
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, were to 

increase from 0.0004 to 0.004 at 1‐quarter ahead inflation forecast, RMSERT 
would decrease from 0.209 in Table 5 to 0.163, resulting in an underestimation of 
the correct benchmark uncertainty by 23%. Clements and Galvao (2017) compare 
RT measure against two ex ante uncertainty measures from survey forecasts and 
find that for both inflation and output growth at within‐year horizon, RT uncer-
tainty underestimates ex ante uncertainty measures.10

4.2. University of Michigan Survey of Consumers

To gain further insight into heterogeneous idiosyncratic errors, we conduct 
a separate experiment using data from the University of  Michigan Survey of 
Consumers (MSC). We choose the Michigan survey since household expecta-
tions in this survey are often used in the macroeconomics literature; see, for 
example, Carroll (2003), Ang, Bekaert, and Wei (2007), and Coibion and 
Gorodnichenko (2015). Each month households give their forecasts of  price 

Table 5. Measures of Historical Uncertainty in MSC Inflation Forecasts  
from 104 Cohorts.

Survey Period RMSEAF RMSERT RMSELPS ZnT
o ZnT

bsc

1979Q4–1989Q4 1.39 3.07 3.33 8.27*** 6.55***
1990Q1–1999Q4 1.28 2.51 2.92 6.08*** 5.14***
2000Q1–2009Q4 2.13 2.66 2.72 20.93*** 12.81***
2010Q1–2017Q4 2.31 2.70 2.78 8.54*** 6.70***
Whole sample 1.79 2.82 2.96 13.62*** 9.52***

Notes: RMSEAF is the conventional uncertainty measure in equation (7), RMSERT is the Reifschneider 
and Tulip (2019)’s uncertainty measure in equation (8) and RMSELPS is our suggested uncertainty 
measure in equation (6). In testing the null hypothesis that RMSERT is the same as RMSELPS, the 
original test statistic ZnT

o  is defined in Theorem 2, and ZnT
bsc  is the bias and skewness corrected test 

statistic as defined in Theorem 3. The inflation forecasts of households are taken from University 
of MSC forecast of price changes over the next 12 months. The actual inflation rate is calculated as 
the annual percentage change in the Consumer Price Index for All Urban Consumers. The pseudo‐
balanced panel includes 104 forecasters by dividing the survey participants into 104 cohorts by their 
age/gender/income from the fourth quarter of 1979 through the fourth quarter of 2017. *** indicates 
significance at the 1% level.
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changes over the next 12 months.11 In order to build a balanced panel, we fol-
lowed Deaton (1985) to convert the repeated cross‐sections MSC data to a 
pseudo panel. Thus, we classify each household into different cohorts according 
to their age (at five‐year intervals), gender (male vs female) and income (quar-
tiles). Souleles (2004), Bruine de Bruin, Manski, Topa, and van der Klaauw 
(2011), and Lahiri and Zhao (2016) provide mounting evidence on the heteroge-
neity in the household price expectations along these dimensions. Then we con-
struct a pseudo‐balanced panel of  104 forecasters, with each of  them calculated 
as the average inflation forecast in the corresponding age/gender/income cohort. 
To increase the number of  observations for each cohort, we pool monthly obser-
vations for each quarter. The sample in this study comprises 153 quarterly sur-
veys from the fourth quarter of  1979 through the fourth quarter of  2017. There 
are about 1,400 participants in each year/quarter and 13 participants in each 
cohort, on average.12 For our purpose, the structure of  heterogeneity should be 
maintained in the pseudo panel. Indeed, the correlation between disagreement 
from the pseudo panel and from the entire sample is about 0.79.

To further explore the heterogeneity across cohorts, in Table 5 we report the 
RMSE and test statistics. For both the whole sample period and various subsam-
ples, we see substantial differences between RMSERT and RMSELPS, and these 
differences are statistically significant at the 1% level. Depending on the sample 
period, RMSERT underestimates the correct benchmark uncertainty by 2%–14%. 
One potential concern with the above analysis is that there are not enough par-
ticipants for each cohort for valid asymptotic inference. To address this issue, we 
drop the gender category and form cohorts by only age and income categories. 
Also, we now construct 6 age cohorts by ages 18–30, 31–40, 41–50, 51–60, 61–70, 
71 and above. Thus, we now have 24 cohorts ( = 6 age cohorts × 4 income cohorts) 
in this alternative dataset, and there are about 58 participants in each cohort on 
average. Table 6 reports the RMSE and test statistics, and the results based on 
24 cohorts are qualitatively the same as those based on 104 cohorts. This sim-
ple experiment confirms our conjecture that there exists substantial differences 
in the idiosyncratic forecast variances among households, and suggests the need 
to construct the correct benchmark uncertainty by incorporating heterogeneous 
individual error variances.

Table 6. Measures of Historical Uncertainty in MSC Inflation Forecasts  
from 24 Cohorts.

Survey Period RMSEAF RMSERT RMSELPS ZnT
o ZnT

bsc

1979Q4–1989Q4 1.41 2.08 2.16 10.44*** 6.96***
1990Q1–1999Q4 1.34 1.71 1.89 15.68*** 8.98***
2000Q1–2009Q4 2.15 2.30 2.33 6.51*** 5.07***
2010Q1–2017Q4 2.30 2.38 2.44 10.52*** 6.97***
Whole sample 1.81 2.13 2.20 22.45*** 11.08***

Notes: See Table 5. The pseudo‐balanced panel includes 24 forecasters by dividing the survey participants 
into 24 cohorts by their age/income from the fourth quarter of 1979 through the fourth quarter of 2017. 
*** indicates significance at the 1% level.
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5. CONCLUDING REMARKS
A number of surveys of professional forecasters and households are regularly 
conducted in many countries around the world, and a widespread interest in 
these surveys suggests that the aggregate macroeconomic forecasts reported by 
these organizations are considered useful by policy makers, investors and other 
stakeholders. Even though it is now recognized in the forecasting profession that 
a point forecast by itself  is of limited use and should be reported with an indica-
tion of the associated uncertainty, currently the consensus forecasts from these 
surveys are not reported with uncertainty bands.

The dominant methodology of forecast combination in econometrics is due 
to Bates and Granger (1969) whose basic criterion for optimal combination is 
based on minimizing the mean squared error of combined forecasts that rule 
out any consideration of the cross‐sectional distribution of forecasts. From the 
standpoint of a policy maker who has access to a number of expert forecasts, 
the uncertainty of a combined or ensemble forecast should be interpreted as that 
of a typical forecaster randomly drawn from the pool. This uncertainty formula 
should incorporate forecaster discord, as justified by (i) disagreement as a com-
ponent of combined forecast uncertainty, (ii) the model averaging literature, and  
(iii) central banks’ communication of uncertainty via fan charts. This is not 
entirely a new idea, but the asymptotic results that we have provided in this paper 
will help crystallize the role of forecaster disagreement in measuring uncertainty 
of combined forecast from the standpoint of a policy maker.

We have identified two layers of heterogeneity in individual forecast errors, 
arising from (i) systematic individual biases and (ii) random individual errors 
with heteroskedasticity. We develop two new statistics to test the heterogene-
ity of idiosyncratic errors under the joint limits with both n and T approaching 
infinity simultaneously. We find significant heterogeneity in professional fore-
casters, which is due primarily to the heterogeneity in individual error variances. 
However, for this set of professional forecasters, the observed heterogeneity does 
not translate into a significant underestimation of true uncertainty if  one uses the 
benchmark uncertainty formula suggested by Reifschneider and Tulip (2019). 
However, when we implement our test on the household inflation expectations, 
the cross‐sectional heterogeneity is found to be considerable, and perhaps not 
surprisingly, the RT formula significantly underestimates the theoretical value by 
as much as 10% for one‐year ahead forecasts.

One potential concern in incorporating disagreement as part of aggregate 
uncertainty is that the prediction intervals will get wider, making inter‐temporal 
movements in consensus forecasts less meaningful. Why would practitioners opt 
for enlarged confidence bands when they are less likely to obtain news‐worthy 
results? The simple answer is that in the long run the reported forecasts will be 
more credible and the uncertainty measures better calibrated. As aptly put by 
Draper (1995) in his concluding remark, “which is worse – widening the bands 
now or missing the truth later?”
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NOTES
1. Granger and Jeon (2004) call this approach of making inference based on combined 

outputs from alternative models as “thick modeling.”
2. The superior performance of the consensus forecast relative to individual forecasts 

follows from Jensen’s inequality, which states that with convex loss functions, the loss asso-
ciated with the mean forecast is generally less than the mean loss of individual forecasts, 
cf. Manski (2011). See also Granger (1989), Makridakis (1989), Diebold and Lopez (1996), 
Newbold and Harvey (2001), and Hendry and Clements (2004) for discussing why combin-
ing is beneficial due to unobserved information sets, diversification gains, insurance against 
structural breaks and misspecifications.

3. See, for example, Lahiri and Sheng (2008), Patton and Timmermann (2010), and 
Andrade, Crump, Eusepi, and Moench (2016). Pesaran and Weale (2006) report an early 
elaboration of many of these issues.

4. Reifschneider and Tulip (2019) report the biases to be transitory. See also Clark, 
McCracken, and Mertens (2020) who make a similar assumption. Note that our bias con-
dition allows for heterogenous rates of individual biases approaching zero.

5. For example, some residual group‐wide influences, resulting from the facts that groups 
of forecasters may adopt similar models, loss functions, judgments of interpretations under 
certain circumstances, may not be strong enough or explicit enough to be embodied in 
specific common factors.

6. Indeed, it would be enough to test the null hypothesis that 
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− −  for our purpose. But ih
2σε  does not depend on T by 

Assumption 3. So a natural choice for the null would then be ih h
2 2σ σ=ε ε  for all i.

7. We also consider the following data generating process eith ith th ithµ λ ε= + +  with 
O nT(( ) )ith

1/2µ = − . We find that the size and power of our tests are almost identical to 
those of the process eith th ithλ ε= + , implying that the impact of μith on our tests are insig-
nificant and thus can be safely ignored.

8. Following Davies and Lahiri (1999), we also experimented with a number of alternative 
imputation schemes including using known lagged actuals and aggregate forecast revisions 
from last forecasts. But these variables were found to be redundant in specification (10).

9. We did 100 imputations for each data set using packages pan and mitml in R (ver-
sion 3.6.0). Specifically, the calculated 100 test statistics ZnT

o  and ZnT
bsc  from the imputed 

data sets are combined in such a way that they reflect the variabilities due to both within 
and between imputations, see Little and Rubin (2002, pp. 86–87). For asymptotically valid 
inference in this context, one needs the assumption that the missingness mechanism is 
ignorable or missing at random (MAR). The MAR assumption merely means that the 
mechanism generating missing values can be ignored while preforming statistical infer-
ence. Identifying the mechanism generating attrition is difficult in our case because we have 
very little information on the forecasters except for their past forecast performance and the 
number of quarters they have been responding. Capistrán and Timmermann (2009), Genre 
et al. (2013), and Lahiri et al. (2017) found little association between participation and 
performance. While the assumption of MAR is almost impossible to test, it does not seem 
to be unreasonable in this example, see Yucel (2011).

10. Clark et al. (2020) have compared the RT approach based on past errors with a 
stochastic multi‐horizon volatility model of nowcasts and successive forecast updates, and 
found that the former yields incorrect coverage rates. However, with smaller rolling window 
sizes around 40 quarters, the two approaches gave comparable results. That said, RT meas-
ure was proposed not as a stand‐alone measure of uncertainty, but rather as a historical 
benchmark against which the FOMC participants would form their own forward‐looking 
evaluations and downside risks.
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11. Specifically, households are first asked, “During the next 12 months, do you think 
that prices in general will go up, or go down, or stay where they are now?” If  the respondent 
answers “go up” or “go down,” point forecasts are requested: “By about what percent do 
you expect prices to go up/down on the average, during the next 12 months?”

12. For 204 cohorts (accounting for about 1% of all cohorts) where there are no partici-
pants, we replace the missing value by the corresponding mean forecast across all partici-
pants in that year/quarter.
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